2/20/20 SOA "Severity" Problems Remark: (Use Fact) $(X-d)_{+} = \begin{cases} O & if X < d \\ X - d & if X > d \end{cases}$ if X2d $X \wedge d = \begin{cases} X \\ d \end{cases}$ if X>d $\Rightarrow (X-d)_{+} + (X \wedge d) = X$ 84) 96) pages 28) next 87) 89) (00)

.

· · 84. A health plan implements an incentive to physicians to control hospitalization under which the physicians will be paid a bonus *B* equal to *c* times the amount by which total hospital claims are under 400 ($0 \le c \le 1$).

The effect the incentive plan will have on underlying hospital claims is modeled by assuming that the new total hospital claims will follow a two-parameter Pareto distribution with $\alpha = 2$ and $\theta = 300$.

E(B) = 100	Let X = rur the total hospital claims
Calculate c.	X~ 2-Pareto (d=2, 0=300)
(A) 0.44	
(B) 0.48	$B = c \cdot (400 - X)_{+}$
(C) 0.52	$100 = C \cdot E[(400 - X)_{+}]$
(D) 0.56	E[(X-d)] = E[X] - E[XAd]
(E) 0.60	$EE((x00 - x)_{+}] = EE(x00) - EE(y00) = x100$
	$E[XA400] = \frac{P.4}{Tebles} = \frac{300}{2-1} \left[1 - \left(\frac{300}{400+300} \right)^{1} \right]$
	$E[400 - x]_{1} = 400 - 300(1 - \frac{3}{7})$
	=7 c = .4375 (A)

95. The number of claims in a period has a geometric distribution with mean 4. The amount of each claim X follows Pr(X = x) = 0.25, x = 1, 2, 3, 4, The number of claims and the claim amounts are independent. S is the aggregate claim amount in the period.

Calculate $F_s(3)$.

- (A) 0.27
- (B) 0.29
- (C) 0.31
- (D) 0.33
- (E) 0.35

(E)

35,000

- **96.** Insurance agent Hunt N. Quotum will receive no annual bonus if the ratio of incurred losses to earned premiums for his book of business is 60% or more for the year. If the ratio is less than 60%, Hunt's bonus will be a percentage of his earned premium equal to 15% of the difference between his ratio and 60%. Hunt's annual earned premium is 800,000.
- L = Incurred losses are distributed according to the Pareto distribution, with $\theta = 500,000$ and $\alpha = 2$.

- 1

Calculate the expected value of Hunt's bonus.

(A) 13,000
$$R = \frac{1}{800000} \implies R \cdot 2 \cdot Pareto(\alpha = 2, \theta = \frac{5}{8})$$

(B) 17,000

(C) 24,000
$$B = 800000(.15) \cdot (.6 - R)_{+}$$

$$(D) 29,000 = 120000 (.6-R_{+})$$

$$\implies$$
 E[B] = 120000. E[(.6-R)+]

$$EE(.6-R)+] = EE.6] - E[RA.6]$$

= .6 - $\frac{5}{8}(1-(\frac{5/8}{.6+5/8}))$
STAM-09-18 $\therefore EEB] = 35,265$

28. You are given:

Claim Size (X)	Number of Claims
(0, 25]	25
(25, 50]	28
(50, 100]	15
(100, 200]	6

Assume a uniform distribution of claim sizes within each interval.

Assume a uniform distribution of claim sizes within calculation of Claim sizes within sizes within sizes within sizes within sizes within siz

- (B) At least 200, but less than 300
- (C) At least 300, but less than 400
- (D) At least 400, but less than 500

$$X^2 - (X \land 150)^2 = \begin{cases} 0 & \text{if } X < 150 \\ X^2 - 150^2 & \text{if } X > 150 \end{cases}$$

74

$$FF Grive X > 15D, \quad f_{X}(x) = \frac{1}{100}$$

$$E [X^{2} - (X \wedge 150)^{2}] = \left[\int_{150}^{200} (x^{2} - 15D^{2}) \cdot \frac{1}{100} dx \right] \cdot \frac{6}{74}$$

87. The graph of the density function for losses is:

Calculate the loss elimination ratio for an ordinary deductible of 20.

(A) 0.20
$$LER = \frac{EEXAdl}{EEX]}$$

(B) 0.24

(C) 0.28
$$E[X] = \int_{0}^{120} x \cdot f(x) dx$$

(D) 0.32

(D) 0.32
(E) 0.36
$$E[X \land 20] = \int_{0}^{20} \chi \cdot f(x) dx + \int_{20}^{120} 20 \cdot f(x) dx$$

$$f(x) = \begin{cases} .01 & 0.00 \\ .03 - .000 25x & 80.000 25x \end{cases}$$

STAM-09-18

89. You are given:

- (i) Losses follow an exponential distribution with the same mean in all years.
- (ii) The loss elimination ratio this year is 70%.
- (iii) The ordinary deductible for the coming year is 4/3 of the current deductible.

Calculate the loss elimination ratio for the coming year.

Calculate the loss elimination ratio for the coming year.
(A) 70%
(B) 75%
(C) 80%
(E) 85%
(E) 90%
(E) 90%
(E) 90%

$$E[XA] = \Theta(1 - e^{-\frac{2}{9}})$$
 (E) $E[XA] = \Theta(1 - e^{-\frac{2}{9}})$
(E) $E[XA] = \Phi(1 - e^{-\frac{2}{9}})$ (E) $E[XA] = \Theta(1 - e^{-\frac{2}{9}})$ (E) $E[XA]$ (E) $E[X$

 \mathbf{h}

90. Actuaries have modeled auto windshield claim frequencies. They have concluded that the number of windshield claims filed per year per driver follows the Poisson distribution with parameter λ , where λ follows the gamma distribution with mean 3 and variance 3.

Calculate the probability that a driver selected at random will file no more than 1 windshield claim next year.

- (A) 0.15
- (B) 0.19
- (C) 0.20
- (D) 0.24
- (E) 0.31

100. The unlimited severity distribution for claim amounts under an auto liability insurance policy is given by the cumulative distribution:

$$F(x) = 1 - 0.8e^{-0.02x} - 0.2e^{-0.001x}, \quad x \ge 0$$

The insurance policy pays amounts up to a limit of 1000 per claim.

Calculate the expected payment under this policy for one claim. $E[X \land 1000] = ?$ (A) 57 X is a $\frac{80\%}{20\%} \text{ sixtave of } Y/W$ (B) 108 $Y \sim E_{XP}(\Theta = 50)$

(C) 166
$$W \sim E_{KP} (\Theta = 1000)$$

- (D) 205
- (E) 240

101. The random variable for a loss, X, has the following characteristics:

x	F(x)	$E(X \wedge x)$
0	0.0	0
100	0.2	91
200	0.6	153
1000	1.0	331

Calculate the mean excess loss for a deductible of 100.

- (A) 250
- (B) 300
- (C) 350
- (D) 400
- (E) 450